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Abstract – In communication systems, n-bit parity problem (NPP) is widely used for error detection and correction. In 
this paper, an efficient architecture for hardware implementation of NPP is proposed. For this purpose, first we 
introduce extending single neuron that can be trained by perceptron learning rule to solve 2-bit and 3-bit parity 
problems. Then, we propose novel architecture of cascaded modular neural networks, based on the presented neuron, 
with O(n/2) neuron and with O(2n) connections to solve NPP.  The main advantages of proposed parity networks are 
low number of neurons, connecting weights and inputs for each neuron.  
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1. Introduction  

 
The n-bit parity problem (NPP) is widely used in 

digital communication and transmission systems, 
especially in error detection and correction modules [1]. 
NPP is the extended XOR problem to the n dimensions 
and efficient hardware implementation of NPP allows 
communications systems to perform close to the channel 
capacity limit. There are various approaches for NPP 
implementation. One of these approaches is neural 
networks (NNs) implementation.  

NNs approach focuses on following two features of 
NPP; first, the NPP shows high degree of data 
nonlinearity. And the second is curse of dimensionality, 
i.e., by increasing the number of inputs n, its 
computational complexity is significantly increased. In 
neural implementation of NPP, n concludes the number 
of neurons in the structure and for optimizing the 
architecture, the number of neurons as well as the number 
of connections must be reduced.  

In the literatures, there are following four types of 
ANNs for NPP solving:  

 
• NNs with complex-valued weights and complex-

valued activation function (CWCA) [2-3]. 
 
• NNs with real weights and real monotonic 

activation functions (RWRA) [4].  
 
• NNs with integer weights and periodic integer 

activation function (IWPA) [5]. 
 
• NNs with integer weights and integer threshold 

activation function (IWIA) [6-7]. 
 
Although, CWCA [8] and IWPA [9] can solve n-bit 

parity problem with O(1) nodes and RWRA needs just 
O(n/2) nodes in hidden layer to solve NPP [10]; Among 
these models, IWIA has important advantage that is 

facility in hardware implementation [6-7].  So many 
researchers have been tried to propose optimum 
architectures with IWIA which are summarized as 
follows.   

Any Boolean function can be implemented in 2 hidden 
layers neural network with O(2n/2) nodes [6]. Kim and 
Park [7] proposed an architecture with O(n) hidden 
neurons to solve NPP. In this architecture, the inputs are 
fully connected with hidden neurons. So O(n2)  
connections is produced in the architecture. Liu et al. [11] 
solved NPP with O(n/2) hidden neurons. In their 
proposed architecture, the inputs are directly connected 
with output and the number of connections is O(n2/2). 
Wilamowski and Hunter [12] proposed several neural 
network architectures for NPP solving. These 
architectures and Arslanov’s architecture [13] can solve 
the NPP with O(logn) neurons. The high number of 
connections and the real connecting weights are 
disadvantages of these architectures. Yang et al. [14] 
presented that O(n) neuron is required to solve NP.  In 
this architecture [14], the number of connections with 
hidden neurons is O(n2).  Franco and Cannas [15] 
introduced modular neural networks to solve NPP. This 
architecture is based on cascaded neural module solving 
XOR problem. The number of real connecting weights in 
this architecture is O(n2).  

Here we introduce extending single neuron perceptron 
which can solve XOR and 3-bit parity problems. The 
proposed model increases the dimension of input vector 
and can be used in cascaded modular architecture to solve 
NPP.  The proposed parity network needs just O(n/2) 
neurons and O(2n) connections  to solve the problem. 

 
 
2. Proposed Parity Network 
 

Proposed parity network is constructed in two steps. 
At the first, extending single neuron perceptron is 
proposed to solve XOR problem. Then it is extended to 
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solve 3-bit parity. Finally the network is constructed by 
using the extended neuron.  
 
2.1. Extending single neuron perceptron  

 
Figure 1 shows the XOR problem where p1 and p2 are 

the inputs. In the Figure 1 the solid points remark the 
output “1” and the hollow points remark the output “0”.  
It is clear that these points cannot be separated by single 
line. Figure 2 shows the extended XOR problem. As 
illustrated in the Figure 2, XOR points in three 
dimensions can be separated by single plane. The third 
dimension is produced by “AND” operator as follows:  

 
p3 = AND(p1, p2)                               (1) 

Eq. 1 is borrowed from the effect of “MAX” operator 
for real inputs in a computational algorithm that was 
presented in our recent work [16].  The “AND” operator 
for binary inputs and “MAX” operator for real inputs 
cause the linear separability of input data.  

 
Figure 1. XOR problem in two dimentions which is not linearly 

separable 

 

 
Figure 2. XOR problem in three dimentions which can be  separated by 

single plane 

 
Based on this extension, the single neuron perceptron 

can solve the XOR problem. In the Figure 3, the 
perceptron, presented as 3 inputs - single output, has 
input weights 1, 1, -3 and the bias value -1. The output of 
the neuron is calculated by following formula: 
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Figure 3. Two inputs extending neuron. The adjusted weights for XOR 
prblem are illustrated in the figure.  

 

2.2.   3-bit parity network 

The perceptron presented in Figure 3 cannot 
approximate 3-bit parity function. Let us generalize the 
extending concept by using the “OR” operator as 
illustrated in Figure 4. The output of the extending 
perceptron in Figure 4 is calculated by following formula:  
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Where w s are input weights and  
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The connecting weights can be adjusted by perceptron 

learning rule as follows: 
iii pOTww )( −+=             i=1…5                (5) 

 
Where T is related target with input pattern p1, p2, p3 

and O is output of neuron and p4, p5 calculated by 
following formulas are extended dimensions:  

 
p4 = AND(p1, p2, p3)                       (6) 
p5 = OR(p1, p2, p3)                            (7) 

 
Actually the proposed extending perceptron, 

calculated by Eq. 3, has 5 inputs including p1, p2, p3 
(input pattern) and p4, p5 (extended connections). The 
learning rule illustrated by Eq. 5 keeps the weights in the 
integer space. 

The proposed extending perceptron solves the 3-bit 
parity problem in the following manner; Consider the 
extending perceptron architecture illustrated in Figure 4 
with the following weights: w1= w2 = w3 = -2 and w4= 6, 
w5= 3 and b = -1thus:  
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based on Eq. 3 can approximate the 3-bit parity 
function. So the extending single neuron perceptron 
illustrated in Figure 4 can solve 3-bit parity problem. 

 

 
Figure 4. Single neuron extending perceptron with hardlim actication 
function, 3 input pattern, 2 input extended connections and bias. The 
adjusted weights for 3-bit parity problem are illustrated in the figure. 

3. Cascaded Extending Perceptron 
 

Figure 5 shows the proposed parity network for 8 bit-
parity problem. Each hidden neuron in this network is the 
three inputs extending neuron illustrated in Figure 4 and 
output neuron is specified by two inputs extending 
neuron illustrated in Figure 3. 
 

    

 
Figure 5. Parity network for 8-bit parity problem. For details of 
hidden neurons see Figure 3 and for details of output neuron see 
Figure 4. 

 
Figure 6 shows the proposed parity network for 9-bit 

problem. Each neuron in this network is three inputs 
extending perceptron presented in Figure 3. NPP, when n 
is even, is constructed similar to Figure 5. And NPP, 
when n is odd, is constructed similar to Figure 6. 
 

 
Figure 6. Parity network for 9-bit parity problem. For details of 
each neuron, see Fugire 4.  

In the proposed parity network, the number of neurons 
for n-bit input is 






2
n . Thus the order of the number of 

nodes is O(n/2). Also The number of “AND” and “OR” 
gates is (n-1) and the number of connecting weights is 
(2n+2).  So the total number of nodes including gates 
belong to O(n) and the total number of connecting 
weights belong to O(2n). 
 
4. Experimental Results on Convergence  

Mean square error (MSE) is performance measure to 
evaluate the convergence of extending perceptron. The 
measure generally is expressed as follows: 
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Where m is number of patterns and is equal to 2n for 

NPP, O s are the outputs of the model and T s are desired 
outputs. Figure 7 shows the MSE of XOR learning. 
According to the Figure 7, tow inputs extending neuron 
just in 10 epochs learns the XOR problem. Figure 8 
presents the MSE of 3-bit parity learning. As illustrated 
in Figure 8, extending single neuron perceptron just in 12 
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epochs learns the 3-bit parity problem. So extending 
neurons can learn the XOR and 3-bit parity problems 
quickly by perceptron learning rule. The adjusted weights 
presented in Figure 3 and Figure 4 are resulted from this 
learning and according to the Figure 5 and Figure 6, can 
be used in NPP solving.     

 
Figure 7. Performance measure in XOR learning epochs  

 
Figure 8. Performance measure in 3-bit parity learning epochs  

 
2- Conclusion 

According to the experimental results, the extending 
single neuron, proposed here, can learn the XOR and 3-bit 
parity problems by perceptron learning rule.  
Additionally, in this paper, a novel cascaded modular 
parity network is constructed based on proposed 
extending neuron to solve n-bit parity problems (NPP). 
The main advantage of presented parity networks is lower 
number of connecting weights. Table 1 shows a 
comparison between proposed parity network and other 
solutions. According to the Table 1, the lower number of 
connecting weights is obtained from the proposed 
solution. The network requires just O(2n) connection and 
O(n/2) neuron to solve NPP.  

 
 
Table 1. Comparisons between various architecture of NPP 

Solutiona Hidden 
neurons 

Connecting 
weights 

Kim and Park [7] O(n) O(n2) 

Liu et al. [11] O(n/2) O(n2/2) 
Wilamowski and 
Hunter [12] O(logn) O(nlogn) 

Arslanov et al. [13] O(logn) O(n2) 

Yang et al. [14] O(n) O(n2) 

Franco and Cannas [15] O(n) O(nlogn) 
Proposed parity 
network O(n/2) O(2n) 

a. Solutions with threshold 
activation functions 
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